Code: 19CE4702B

IV B.Tech - I Semester - Regular Examinations - DECEMBER 2022

GROUND IMPROVEMENT TECHNIQUES (CIVIL ENGINEERING)

Duration: 3 hours Max. Marks: 70

Note: 1. This question paper contains two Parts A and B.

- 2. Part-A contains 5 short answer questions. Each Question carries 2 Marks.
- 3. Part-B contains 5 essay questions with an internal choice from each unit. Each question carries 12 marks.
- 4. All parts of Question paper must be answered in one place.

BL – Blooms Level

CO – Course Outcome

PART – A

		BL	CO
1. a)	When we required ground improvement?	L1	CO1
1. b)	Explain the term forced vibration.	L1	CO2
1. c)	What do you know about drainage of soils?		CO3
1. d)	Write the uses of soil reinforcement.	L1	CO4
1. e)	What will happen to sand that isn't reinforced and		
	is reinforced with fiber when a certain cell	L1	CO5
	pressure is applied to it?		

PART – B

			BL	СО	Max. Marks	
UNIT-I						
2	a)	Explain the role of ground improvement in Foundation Engineering.	L2	CO1	6 M	
		in Foundation Engineering.				
	b)	Describe the clay salt interaction.	L2	CO1	6 M	

OR						
3	a)	Explain the concept of electric charge on	L2	CO1	6 M	
		the clay surface.				
	b)	What is soil stabilization? Discuss the	L2	CO1	6 M	
		engineering benefits of cement				
		stabilization?				
	T	UNIT-II	T			
	a)	Explain the terms: (i) degree of freedom	L2	CO2	6 M	
	<i>u)</i>	(ii) simple harmonic motion				
4		Explain the term damping and give the	L2	CO2	6 M	
	b)	characteristics of different types of				
		damping.				
	I	OR		T T		
	a)	Explain the vibroflotation technique in	L2	CO2	6 M	
5		ground improvement.		~ ~ ~		
	b)	Describe the stone column technique in	L2	CO2	6 M	
	,	ground improvement.				
	UNIT-III					
	a)	What is dewatering? What are the	L2	CO ₃	6 M	
		objectives of dewatering?	7.0	000		
6		What are the advantages and	L3	CO3	6 M	
	b)	disadvantages of electro-osmosis as				
		compared with the conventional drainage				
		system?				
OR						
7	a) b)	What is the selection criterion of fill	L3	CO3	6 M	
		material around drains?	12	CO2	<u> </u>	
		Explain the working of a vacuum well	L3	CO3	6 M	
		point system.				

UNIT-IV						
8	0)	Explain about the basic mechanism of	L3	CO4	6 M	
	a)	reinforced soil with a neat sketch.				
		For reinforced sand, consider the	L3	CO4	6 M	
		following: Angle of shearing resistance of				
	b)	unreinforced sand = 30°, Friction factor,				
		F = 0.15. Determine the angle of shearing				
		resistance of the reinforced sand.				
OR						
9	Exp	plain about internal and external stability of	L4	CO4	12 M	
	soil	reinforcement.				
UNIT-V						
10	Exp	plain about the analysis of strip footing on	L4	CO5	12 M	
	rein	forced soil bed.				
OR						
11	Exp	plain the Ultimate bearing capacity of	L4	CO5	12 M	
	foo	ting on reinforced earth slab.				